Exercice 1

Partie A

1. Les fonctions polynomiale et ln sont dérivables sur $]0;+\infty[$. Par conséquent la fonction g l'est aussi.

$$g'(x) = 6x^2 + \frac{2}{x}$$
. Pour tout $x > 0$, $6x^2 > 0$ et $\frac{2}{x} > 0$. Donc $g'(x) > 0$ sur $]0; +\infty[$.

La fonction g est donc croissante sur $]0;+\infty[$

 $\lim_{\substack{x \to 0 \\ \lim_{x \to +\infty}}} \ln x = -\infty$ $\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2x^3 - 1 = +\infty \text{ et } \lim_{\substack{x \to +\infty \\ x \to +\infty}} \ln x = +\infty$ Par conséquent $\lim_{\substack{x \to +\infty \\ x \to +\infty}} g(x) = +\infty$ 2. $\lim \ln x = -\infty$

De plus, la fonction g est continue sur $]0;+\infty[$ et strictement croissante. D'après le théorème de la bijection, il existe donc un unique réel α tel que $g(\alpha) = 0$.

La calculatrice fournit une valeur approchée de α arrondie au centième : 0,87

3. Par conséquent, si $x \in [0, \alpha]$, g(x) < 0si $x > \alpha$, g(x) > 0

Partie B

- 1. $\lim_{x \to 0} 2x = 0$ et $\lim_{x \to 0} \ln x = -\infty$ donc $\lim_{x \to 0} \frac{\ln x}{x^2} = -\infty$ par conséquent $\lim_{x \to 0} f(x) = +\infty$ $\lim_{x \to +\infty} 2x = +\infty \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x^2} = 0 \qquad \text{donc } \lim_{x \to +\infty} f(x) = +\infty$ 2. $f(x) 2x = -\frac{\ln x}{x^2}$ or $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$ donc $\lim_{x \to +\infty} f(x) 2x = 0$.

Cela signifie donc que la droite Δ d'équation y = 2x est asymptote à la courbe \mathcal{C} .

De plus $\ln x$ est négatif sur]0;1] et positif sur $[1;+\infty[$.

Donc \mathcal{C} est au-dessus de Δ sur [0;1] et au-dessous de Δ sur $[1;+\infty[$.

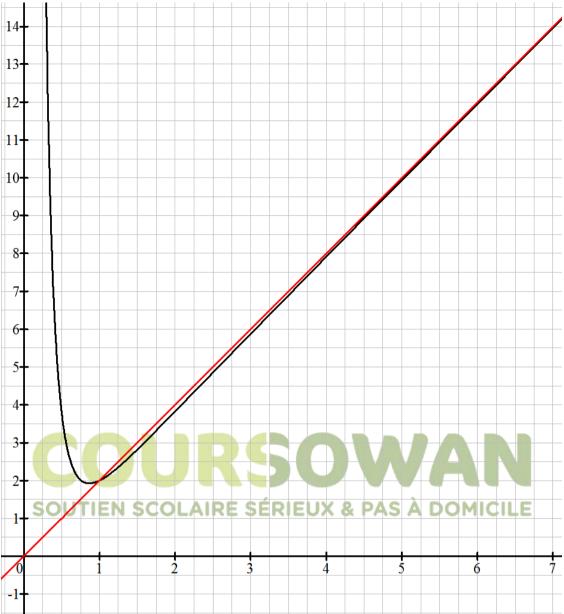
3. f est dérivable sur $[0, +\infty]$ comme somme et quotient de fonction dérivable sur cet intervalle.

$$f'(x) = 2 \frac{\frac{1}{x} \times x^2 - 2x \ln x}{x^4} = \frac{2x^4 - x + 2x \ln x}{x^4} = \frac{2x^3 - 1 + 2\ln x}{x^3} = \frac{g(x)}{x^3}.$$

Sur $]0;+\infty[, x^3>0$. Donc f' et g ont le même signe sur $]0;+\infty[$.

ł•				
	x	0	α	$+\infty$
	g'(x)	1	0	+
	f	+∞	$f(\alpha)$	+∞

Liban 2012 BAC S Correction



Partie C

- 1. L'aire cherchée est égale à $\int_1^n (2x f(x)) dx$ u.a. $= \int_1^n \frac{\ln x}{x^2} dx$ u.a. $= 2 \int_1^n \frac{\ln x}{x^2} dx$ cm²
- **2.** a. Utilisons, pour l'intégration par parties, $u(x) = \ln x$ $u'(x) = \frac{1}{x}$ et $v'(x) = \frac{1}{x^2}$ $v(x) = \frac{-1}{x}$.

$$\int_{1}^{n} \frac{\ln x}{x^{2}} dx = \left[\frac{-\ln x}{x} \right]_{1}^{n} - \int_{1}^{n} \frac{-1}{x^{2}} dx = \frac{-\ln n}{n} - \left[\frac{1}{x} \right]_{1}^{n} = \frac{-\ln n}{n} - \frac{1}{n} + 1$$

- **b.** Par conséquent $I_n = 2\left(\frac{-\ln n}{n} \frac{1}{n} + 1\right)$
- 3. $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$ donc $\lim_{n \to +\infty} I_n = 2$

Exercice 2

1. Il y a $\binom{4}{1}$ = 4 façons de piocher une boule blanche parmi $\binom{10}{1}$ = 10tirages possibles.

Donc
$$P_{J1}(B) = \frac{4}{10} = \frac{2}{5}$$

De même
$$P_{J2}(B) = \frac{\binom{4}{2}}{\binom{10}{2}} = \frac{2}{15}$$

2. D'après la propriété des probabilités totales :

$$\begin{split} P(B) &= P(B \cap J_1) + P(B \cap J_2) + P(B \cap J_3) + P(B \cap J_4) \\ &= P(J_1) \times P_{J1}(B) + P(J_2) \times P_{J2}(B) + P(J_3) \times P_{J3}(B) + P(J_4) \times P_{J4}(B) \\ &= \frac{1}{4} \times \left(\frac{2}{5} + \frac{2}{15} + \frac{1}{30} + \frac{1}{210}\right) \quad \text{car tous les \'ev\`enements } J_1, J_2, \dots \text{ sont \'equiprobables.} \\ &= \frac{1}{7} \end{split}$$

3. On cherche $P_B(J_3) = \frac{P(B \cap J_3)}{P(B)} = \frac{\frac{1}{4} \times \frac{1}{30}}{\frac{1}{7}} = \frac{7}{120}$

4. a. Les tirages sont indépendants. Il y a 2 issues à chaque tirage : B et \overline{B} . On joue 10 fois de suite. La variable aléatoire N suit donc une loi Binomiale de paramètre n = 10 et $p = \frac{1}{7}$.

$$P(N = k) = {10 \choose k} \times \left(\frac{1}{7}\right)^k \times \left(\frac{6}{7}\right)^{n-k}$$

b. Par conséquent $P(N=3) = {10 \choose 3} \times \left(\frac{1}{7}\right)^3 \times \left(\frac{6}{7}\right)^7 = 0,12 \text{ à } 10^{-2} \text{ près}$

Exercice 3

1. Un vecteur directeur de \mathcal{D}_1 est \vec{u} (1; 2; -1). Celui de \mathcal{D}_2 est \vec{v} (5; -2; 1)

 $\frac{1}{5} \neq \frac{2}{-2}$ donc \vec{u} et \vec{v} ne sont pas colinéaires.

Cherchons si les 2 droites sont sécantes :

$$\begin{cases} 4+t=8+5t' \text{ (L1)} \\ 6+2t=2-2t' \text{ (L2)} \\ 4-t=6+t' \text{ (L3)} \end{cases} \Leftrightarrow \begin{cases} 4+t=8+5t' \text{ (L1)} \\ 6+2t=2-2t' \text{ (L2)} \\ 8=14+6t' \text{ (L1+L3)} \end{cases} \Leftrightarrow \begin{cases} 4+t=8+5t' \text{ (L1)} \\ 6+2t=2-2t' \text{ (L2)} \\ t'=-1 \end{cases} \Leftrightarrow \begin{cases} t=-1 \\ 6+2t=2-2t' \text{ (L2)} \\ t'=-1 \end{cases}$$

$$6 + 2t = 4$$
 et $2 - 2t' = 4$.

Donc les 2 droites sont sécantes. Elles sont par conséquent coplanaires.

L'affirmation est VRAIE.

2. D'une part, on calcule AB = $\sqrt{9^2 + (-6)^2 + 15^2} = \sqrt{342} = 3\sqrt{38}$

D'autre part, on calcule la distance de A à
$$\mathcal{P}$$
: $\frac{|3 \times 12 + 7 \times 2 - 5 \times (-13) - 1|}{\sqrt{3^2 + 2^2 + (-5)^2}} = \frac{114}{\sqrt{38}} = \frac{114}{38} \sqrt{38} = 3\sqrt{38}$

Donc B est le projeté orthogonal du point A sur ${\mathcal P}$.

Affirmation VRAIE.

3. $u_n - v_n = \frac{n+1}{n+2} - 2 - \frac{1}{n+2} = \frac{n-2n-4}{n+2} = \frac{-n-4}{n+2}$. La limite de ce quotient quand n tend vers $+\infty$ est -1.

Donc les suites ne sont pas adjacentes.

Affirmation FAUSSEN SCOLAIRE SÉRIEUX & PAS À DOMICILE

4. Montrons par récurrence que cette suite est majorée par 3.

Initialisation : $u_0 = 1 < 3$. La propriété est donc vraie au rang 0.

Hérédité : Supposons que $u_n < 3$

Alors $u_{n+1} = \frac{1}{3}u_n + 2 < \frac{1}{3} \times 3 + 2 = 3$. La propriété est donc vraie au rang n+1

Conclusion : La propriété est vraie au rang 0, en supposant la propriété vraie au rang n elle est vraie au rang n+1.

par conséquent, la suite est majorée par 3.

Affirmation VRAIE.

Exercice 4 (Candidats n'ayant pas suivi l'enseignement de spécialité)

1. **a.** Calculons
$$\frac{z_C - z_B}{z_A - z_B} = \frac{2i\sqrt{3} - 3 - i\sqrt{3}}{2 - 3 - i\sqrt{3}} = \frac{i\sqrt{3} - 3}{-1 - i\sqrt{3}} = -i\sqrt{3}$$
.

Donc $\widehat{ABC} = \frac{\pi}{2}$.

b. Le triangle ABC est donc rectangle en B. Le centre du cercle circonscrit est donc le milieu de

[AC].
$$\omega = \frac{2 + 2i\sqrt{3}}{2} = 1 + i\sqrt{3}$$
.

2. a.
$$z_0 = 0$$
; $z_1 = 2$; $z_2 = 1 + i\sqrt{3} + 2 = 3 + i\sqrt{3}$; $z_3 = \frac{1 + i\sqrt{3}}{2}(3 + i\sqrt{3}) + 2 = 2i\sqrt{3} + 2$

$$z_4 = \frac{1 + i\sqrt{3}}{2} 2i\sqrt{3} + 2 + 2 = 2i\sqrt{3}$$

b.
$$A_1A_2 = |3 + i\sqrt{3} - 2| = 2$$
 $A_2A_3 = |2 + 2i\sqrt{3}|$

b.
$$A_1A_2 = |3 + i\sqrt{3} - 2| = 2$$
 $A_2A_3 = |2 + 2i\sqrt{3} - 3 - i\sqrt{3}| = 2$ $A_3A_4 = |2i\sqrt{3} - 2 - 2i\sqrt{3}| = 2$

c.
$$z_{n+1} - \omega = \frac{1 + i\sqrt{3}}{2}z_n + 2 - (1 + i\sqrt{3}) = \frac{1 + i\sqrt{3}}{2}z_n + 1 - i\sqrt{3}$$

$$\frac{1+i\sqrt{3}}{2}(z_n-\omega) = \frac{1+i\sqrt{3}}{2}z_n - \frac{1+i\sqrt{3}}{2}(1+i\sqrt{3}) = \frac{1+i\sqrt{3}}{2}z_n + 1 - i\sqrt{3}.$$

Donc
$$z_{n+1} - \omega = \frac{1 + i\sqrt{3}}{2}(z_n - \omega)$$

d. On a donc z_{n+1} $\omega = e^{i\pi/3}(z_n + \omega)$ E SÉRIEUX & PAS À DOMICILE

Il s'agit donc d'une rotation de centre Ω et d'angle $\frac{\pi}{3}$.

$$\mathbf{e}_{\bullet} \ z_{n+6} - \omega = e^{\mathrm{i}\pi/3}(z_{n+5} - \omega) = e^{\mathrm{i}2\pi/3}(z_{n+4} - \omega) = e^{\mathrm{i}3\pi/3}(z_{n+3} - \omega) = e^{\mathrm{i}4\pi/3}(z_{n+2} - \omega) = e^{\mathrm{i}5\pi/3}(z_{n+1} - \omega) = e^{\mathrm{i}\pi/3}(z_{n+2} - \omega) = e^{\mathrm{i}\pi/3}(z_{n+3} - \omega) = e^{\mathrm{i}\pi/3}(z_{n+$$

 $e^{i6\pi/3}(z_n - \omega) = z_n - \omega$. Donc A_{n+6} et A_n sont confondus.

$$2012 = 335 \times 6 + 2$$
. Donc $A_{2012} = A_2 = B$

3. Montrons par récurrence que $A_{n+1}A_n = 2$.

Initialisation : $A_0A_1 = 2$. La propriété est vraie au rang 0.

Hérédité : Supposons la propriété vraie au rang n-1: $A_nA_{n-1}=2=|z_n-z_{n-1}|$

$$A_{n+1}A_n = |z_{n+1} - z_n| = \left| \frac{1 + i\sqrt{3}}{2} z_n + 2 - z_n \right| = \left| \frac{1 + i\sqrt{3}}{2} z_n + 2 - \frac{1 + i\sqrt{3}}{2} z_{n-1} - 2 \right| = \left| \frac{1 + i\sqrt{3}}{2} (z_n - z_{n-1}) \right| = \left| \frac{1 + i\sqrt{3}}{2} (z_n - z_{n-1}$$

$$|z_n - z_{n-1}| = 2.$$

Conclusion : La propriété est vraie au rang 0. En la supposant vraie au rang n-1, elle l'est au rang suivant.

Donc pour tout n, $A_nA_{n+1} = 2$.

Liban 2012 BAC S Correction

Exercice 4 (Candidats ayant suivi l'enseignement de spécialité)

1.
$$z_1 = 1$$
; $z_2 = \frac{1+i}{2} + 1 = \frac{3+i}{2}$; $z_3 = \frac{1+i}{2} \times \frac{3+i}{2} + 1 = \frac{3+2i}{2}$

2. a. On a $z_{n+1} = \frac{1+\mathrm{i}}{2}z_n + 1$. Il s'agit de l'équation complexe d'une similitude directe:

- de rapport :
$$\left| \frac{1+i}{2} \right| = \frac{\sqrt{2}}{2}$$

- d'angle :
$$arg\left(\frac{1+i}{2}\right) = \frac{\pi}{4}$$

Déterminons le centre de cette similitude en déterminant l'affixe du point fixe.

$$\omega = \frac{1+i}{2}\omega + 1 \text{ donc } \omega = \frac{1}{\frac{1-i}{2}} = 1+i.$$

b. Calculons les longueurs des 3 côtés du triangle.

$$\Omega A_n = |z_n - \omega|$$

$$\Omega A_{n+1} = |z_{n+1} - \omega| = \frac{\sqrt{2}}{2} |z_n - \omega|$$

$$A_{n+1}A_n = |z_{n+1} - z_n| = \left| \frac{1+i}{2} z_n + 1 - z_n \right| = \left| \frac{-1+i}{2} z_n + 1 \right|$$

Calculons
$$\frac{-1+i}{2}(z_n-\omega) = \frac{-1+i}{2}z_n - \frac{-1+i}{2}(1+i) = \frac{-1+i}{2}z_n + 1$$

donc
$$A_{n+1}A_n = \left|\frac{-11+i}{2}(z_n - \omega)\right| = \frac{\sqrt{2}}{2}|z_n - \omega|$$
 ERIEUX & PAS À DOMICILE

Par conséquent $A_{n+1}A_n = \Omega A_{n+1}$. Le triangle est isocèle en A_{n+1} .

Dans le triangle, le plus grand côté est $[\Omega A_n]$.

D'une part
$$\Omega A_n^2 = |z_n - \omega|^2$$
 D'autre part $\Omega A_{n+1}^2 + A_{n+1} A_n^2 = \frac{1}{2} |z_n - \omega|^2 + \frac{1}{2} |z_n - \omega|^2$.

Donc $\Omega A_{n+1}^2 + A_{n+1} A_n^2 = \Omega A_n^2$. D'après la réciproque du théorème de Pythagore, le triangle est rectangle en A_{n+1} .

3. a. Montrons le résultat par récurrence.

Initialisation :
$$\Omega A_0 = |\omega| = \sqrt{2} = \left(\frac{\sqrt{2}}{2}\right)^{\text{-1}}$$
 . La propriété est vraie au rang 0.

Hérédité : Supposons la propriété vraie au rang n.

$$\Omega A_{n+1} = |z_{n+1} - \omega| = \frac{\sqrt{2}}{2} |z_n - \omega| = \frac{\sqrt{2}}{2} \qquad \left(\frac{\sqrt{2}}{2}\right)^{n-1} = \left(\frac{\sqrt{2}}{2}\right)^n. \text{ La propriété est vraie au rang } n+1.$$

Conclusion : La propriété est vraie au rang 0. En la supposant vraie au rang n, elle est vraie au rang suivant.

Liban 2012 BACS Correction

Donc pour tout
$$n$$
, $\Omega A_n = \left(\frac{\sqrt{2}}{2}\right)^{n-1}$

b. On souhaite que
$$\left(\frac{\sqrt{2}}{2}\right)^{n-1} < 0.001$$
 donc $(n-1) \ln \frac{\sqrt{2}}{2} < \ln 0.001$

Soit
$$n-1 > \frac{\ln 0,001}{\ln \frac{\sqrt{2}}{2}}$$
 et donc $n > 1 + \frac{\ln 0,001}{\ln \frac{\sqrt{2}}{2}}$ d'où $n \ge 21$.

4. Puisque le triangle $\Omega A_n A_{n+1}$ est rectangle, on a

$$a_{n}^{2} = \Omega A_{n}^{2} - \Omega A_{n+1}^{2} = \left(\left(\frac{\sqrt{2}}{2} \right)^{n-1} \right)^{2} - \left(\left(\frac{\sqrt{2}}{2} \right)^{n} \right)^{2} = \left(\frac{\sqrt{2}}{2} \right)^{2n-2} - \left(\frac{\sqrt{2}}{2} \right)^{2} = \left(\frac{\sqrt{2}}{2} \right)^{2n-2} \left(1 - \left(\frac{\sqrt{2}}{2} \right)^{2} \right)$$

$$= \left(\frac{\sqrt{2}}{2} \right)^{2n-2} \times \frac{1}{2}$$

Par conséquent
$$a_n = \left(\frac{\sqrt{2}}{2}\right)^{n-1} \times \frac{1}{\sqrt{2}} = \left(\frac{\sqrt{2}}{2}\right)^n \times \frac{2}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \left(\frac{\sqrt{2}}{2}\right)^n$$

 L_n est donc la somme d'une suite géométrique de raison $\frac{\sqrt{2}}{2}$.

Donc
$$L_n = \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \frac{\sqrt{2}}{2}}$$
.

SOUTIEN SCOLAIRE SÉRIEUX & PAS À DOMICILE La raison est inférieure à 1 donc L_n tend donc vers $\frac{1}{1-\frac{\sqrt{2}}{2}}$ quand n tend vers $+\infty$.

5. D'après l'écriture complexe de la similitude directe et de ses caractéristiques vu en 1. on a :

$$\begin{split} z_{n+4} - \omega &= \frac{\sqrt{2}}{2} \, \mathrm{e}^{\mathrm{i} \pi/4} \, (z_{n+3} - \omega) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \, \, \mathrm{e}^{\mathrm{i} 2\pi/4} \, (z_{n+2} - \omega) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \, \, \mathrm{e}^{\mathrm{i} 3\pi/4} \, (z_{n+1} - \omega) \\ &= \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \, \times \frac{\sqrt{2}}{2} \, \, \mathrm{e}^{\mathrm{i} 4\pi/4} \, (z_{n} - \omega). \end{split}$$

Par conséquent les points A_n , Ω et A_{n+4} sont alignés.

